Impacts of Beam Broadening and Earth Curvature on Storm-Scale 3D Variational Data Assimilation of Radial Velocity with Two Doppler Radars
نویسندگان
چکیده
The radar ray path and beam broadening equations are important for assimilation of radar data into numerical weather prediction (NWP) models. They can be used to determine the physical location of each radar measurement and to properly map the atmospheric state variables from the model grid to the radar measurement space as part of the forward observation operators. Historically, different degrees of approximations have been made with these equations; however, no systematic evaluation of their impact exists, at least in the context of variational data assimilation. This study examines the effects of simplifying ray path and ray broadening calculations on the radar data assimilation in a 3D variational data assimilation (3DVAR) system. Several groups of Observational System Simulation Experiments (OSSEs) are performed to test the impact of these equations to radar data assimilation with an idealized tornadic thunderstorm case. This study shows that the errors caused by simplifications vary with the distance between the analyzed storm and the radar. For single time level wind analysis, as the surface range increases, the impact of beam broadening on analyzed wind field becomes evident and can cause relatively large error for distances beyond 150 km. The impact of the earth’s curvature is more significant, even for distances beyond 60 km, because it places the data at the wrong vertical location. The impact of refractive index gradient is also tested. It is shown that the variations of refractive index gradient have a very small impact on the wind analysis results. Two time series of 1-h-long data assimilation experiments are further conducted to illustrate the impact of the beam broadening and earth curvature on all retrieved model variables. It is shown that all model variables can be retrieved to some degrees in all data assimilation experiments. Similar to the wind analysis experiments, the impacts of both factors are not obvious when radars are relatively close to the storm. When the radars are far from the storm (especially beyond 150 km), overlooking beam broadening degrades the accuracy of assimilation results slightly, whereas ignoring the earth’s curvature leads to significant errors.
منابع مشابه
A Real-Time, Three-Dimensional, Rapidly Updating, Heterogeneous Radar Merger Technique for Reflectivity, Velocity, and Derived Products
With the advent of real-time streaming data from various radar networks, including most Weather Surveillance Radars-1988 Doppler and several Terminal Doppler Weather Radars, it is now possible to combine data in real time to form 3D multiple-radar grids. Herein, a technique for taking the base radar data (reflectivity and radial velocity) and derived products from multiple radars and combining ...
متن کاملImpacts of Initial Estimate and Observation Availability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter
The ensemble Kalman filter (EnKF) uses an ensemble of short-range forecasts to estimate the flow-dependent background error covariances required in data assimilation. The feasibility of the EnKF for convective-scale data assimilation has been previously demonstrated in perfect-model experiments using simulated observations of radial velocity from a supercell storm. The present study further exp...
متن کاملThe Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation
In this paper, we first describe the current status of the Advanced Regional Prediction System of the Center for Analysis and Prediction of Storms at the University of Oklahoma. A brief outline of future plans is also given. Two rather successful cases of explicit prediction of tornadic thunderstorms are then presented. In the first case, a series of supercell storms that produced a historical ...
متن کامل3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part II: Impact of Radial Velocity Analysis via 3DVAR
In this two-part paper, the impact of level-II Weather Surveillance Radar-1988 Doppler (WSR-88D) radar reflectivity and radial velocity data on the prediction of a cluster of tornadic thunderstorms in the Advanced Regional Prediction System (ARPS) model is studied. Radar reflectivity data are used primarily in a cloud analysis procedure that retrieves the amount of hydrometeors and adjusts in-c...
متن کاملImpact of Configurations of Rapid Intermittent Assimilation of Wsr-88d Radar Data for the 8 May 2003 Oklahoma City Tornadic Thunderstorm Case
The operational WSR-88D Doppler radar network of the United States (Crum and Alberty 1993) has dramatically improved the ability of severe weather warning in routine operations (Serafin and Wilson 2000); it is also playing an important role in storm-scale data assimilation and model initialization, because it is the only observational network that can resolve convective storms. However, the ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009